
Betfair Trading with R

A guide to using the BetfaiR package

Betwise Limited

Table Of Contents

 1Table Of Contents ..
 2Chapter 1 - Introduction ...
 2The BetfaiR package for R ..
 3Using Betfair Trading with R ..
 3Chapter 2 - Installing R and BetfaiR ..
 4Installing R ..
 4A brief guide to installing R ...
 5Installing the betfaiR package ...
 5Installing and loading the package in Windows ...
 5Loading the package in Mac OS X ..
 6Loading the package in Linux ..
 6Getting help with the betfaiR package ..
 7Chapter 3 - Login and market search ...
 7Let’s get started ..
 7Logging in via the API ...
 8Searching Available Markets for Different Sports ...

 11Using code snippets for greater productivity ...
 14Chapter 4 - Getting market data ...
 19Collecting complete market price time series ..
 20Building a data structure containing market data time series ..
 21The getPrices function ..
 21The update function ...
 22Complete script to collect prices ...

 24Chapter 5 - Market Price Analysis and Visualisation. ...
 24Visualising the price ladder with plotPrice ..
 25Technical analysis plots with quantmod ..
 25Calculating the market overround ..
 26Sophisticated technical analysis plots ...
 26The implied probability plot ...

 27Chapter 6 - Betting and Trading ...
 28Betting and Trading - what’s the difference? ...
 28Placing a bet ..
 30Updating a bet ...
 31Cancelling a bet ...
 31Conclusion ...
 31Chapter 7 - Applying BetfaiR to example betting strategies ...
 32Betting strategies ..
 32Fundamental data in sports betting ...
 33Horseracing analysis using Smartform with R ..
 35Betfair daily mapping ...

 36Appendix 1 - Access to Betfair API Services ...
 36Appendix 2 - Betfair Price Increments ..

© 2011 Betwise Ltd 1 v. 1.0

Chapter 1 - Introduction

The BetfaiR package for R

Any number of languages can be used for implementing an interface to the Betfair API, but there are
plenty of reasons to look at R for creating a programming toolbox for betting strategies which use the
Betfair API. First, it is a data analysis environment that can be used by novice and expert programmers
alike. The basics of the language are easy to apply, there is copious documentation, example code, and the
R environment provides an interactive interface that can be used to type and return results, enabling
novices to build programs step by step and experts to explore data and test ideas before creating programs.
At the same time, R accommodates the creation of complex scripts and packages as any other full
featured programming language.

One of the key aims of the book Automatic Exchange Betting - - was to show exactly how to build code
and scripts for the Betfair API from scratch, so we stopped short of creating a high level package that
hides the detail of how the functions are implemented from the user.

However, with the principles of implementing the Betfair API already being documented, the logical next
step is to abstract the detail from the user and make the code for implementing betting strategies as
succinct as possible. This means producing a high level package that can minimize the code which the
user has to write and remember, to implement all API functions instead of just a subset, and to provide as
many ancilliary functions for the analysis of betting markets and development of quantitative strategies as
possible. In short, to create an easy to use, high level programming toolbox for creating strategies with the
Betfair API.

Perhaps most interesting for Betfair users, R is a language that is designed specifically for data analysis and
has become the lingua franca of statisticians in many fields. This includes quantitative finance, with which
exchange betting shares so many parallels. The core language includes powerful statistical techniques, as
well as data manipulation and visualisation (ie. graphical) capabilities. Additionally, R is a hugely popular
language that has a wide user community contributing new packages for all sorts of purposes at an
exponential rate. All these features can be leveraged for the benefit of creating and testing betting
strategies using the core API functions.

The Perl library for the Betfair API detailed in Automatic Exchange Betting was used as a starting point,
together with the comprehensive Betfair API documentation available at:

http://bdp.betfair.com/index.php?option=com_weblinks&catid=59&Itemid=113

(Download the Sports Reference API Guide near the top of the page.)

Bryan Lewis, (co-author or author of many R packages including iqfeed, esperr, rredis, irlba and fls) coded
up all the Betfair API functions in BetfaiR so that they can be used at a high level, as well as adding new
functions and plot types that act on the return data.

As a result, the open source package available from Betwise offers an intuitive scripting interface to the
Betfair API where all function calls to the API use their corresponding Betfair names, together with
arguments where relevant. Implementation details, such as saving and returning session tokens with each
subsequent call to the Betfair API, are completely handled for the user. Further, it offers the first scripting
interface to Betfair that can be used interactively, in R’s usual development and prototyping mode, as well
as programmatically. As such, we are hopeful that libraries available in R offer the prospect of adoption by

© 2011 Betwise Ltd 2 v. 1.0

http://bdp.betfair.com/index.php?option=com_weblinks&catid=59&Itemid=113

a wider audience than some of the existing lower level libraries available.

Of course, a codebase to help automate infrastructure provides a great short cut to get strategies to
market, but does not guarantee profitability once you arrive.

Also, whilst there are similarities with financial markets, there are key differences in sports betting markets
that need to be considered, not least of which is the study of - and access to - fundamental data. At
Betwise we provide this for horseracing markets over at , and within this guide we make reference to how
you can use R both as an interface to the BetfaiR API and to the Smartform database, to provide a
uniform programmatic interface through which to implement betting strategies.

Using Betfair Trading with R

Finally, a few notes on the guide itself.

Through the guide we refer to the R package that provides an interface to the Betfair API as betfaiR and
the Betfair exchange itself as Betfair. However, the package itself is installed within the R environment as
betfair - see the next Chapter for detailed installation instructions.

Whilst you can dip in and out of the guide, we suggest following the Chapter structure (especially if you’re
new to programming with the Betfair API), since the guide offers a logical walkthrough to programming
with the API, from logging in to building strategies.

The code examples can be copied and pasted as is into R, paying attention to any prerequisite steps that
are mentioned in the text.

Last but not least, if you have any questions or would like to contribute your own code examples or
strategies, please join us at:

http://answers.betwise.net/

© 2011 Betwise Ltd 3 v. 1.0

http://answers.betwise.net/

Chapter 2 - Installing R and BetfaiR
R is described variously as a programming language and a data analysis environment. This is because,
unlike some programming languages, R can be run interactively as well as at the command line, or in the
background.

The Betfair package is a complete set of functions that can be used in R, designed for programming with
the Betfair API. To use the BetfaiR package, you’ll need both R and BetfaiR installed.

If you’re already have R on your system, you can skip ahead past “Installing R” to the section on
Installing the BetfaiR package.

Installing R

Whatever way you choose to use R, you’ll need to install it. This section will explain briefly how to
download and install R, though a simple google for “how to install R” will generally yield useful links
within the top 5 hits, including Youtube videos with screenshots if you’re unsure on following written steps.

You can generally use any of the instructions you find in the top hits online with confidence, but you’ll
need to be remember that:

a. you are trying to install R binaries (you can also build from the source code, but we’re assuming that if
you want to build R from source you don’t need these instructions), and

b. You need to choose the right version of R corresponding to your operating system.

A brief guide to installing R

1. Go to: http://www.r-project.org/

2. Follow the link for “Download R” on the home page

3. You will be asked to click a link to the “CRAN mirror” from which to download R - this should be
for a location near you.

4. You’ll see something like the following text at the top of the download mirror page you have
selected:

Download and Install R Precompiled binary distributions of the base system and contributed packages,
Windows and Mac users most likely want one of these versions of R:

Download R for Linux
Download R for MacOS X
Download R for Windows

5. Click the link that corresponds to your OS above, and then click the file within the new page to get
the latest version of R for your OS.

6. The relevant R binary will start to download.

7. When the download’s done, double click the installer file that you have downloaded and follow the
instructions when prompted.

© 2011 Betwise Ltd 4 v. 1.0

http://www.r-project.org/

8. When you’re done, you should be able to start R by double clicking the R icon in Windows and
Mac, or by typing “R” at the OS command line (all systems).

Installing the betfaiR package

First, make sure you have a working install of R, as above. You may also wish to create a directory in your
local system called betwise to make installation more straightforward - we have done so in the example
shown below. Then, download the betfaiR package from:

http://www.betwise.co.uk/betfair

You’ll see links for two choices:

Unix/linux/mac package
Windows package

Select the correct package for your operating system by right clicking the relevant link and saving the file
to your local machine. In this case we will save the file to our local betwise directory. Now, load the
package in R (you only have to do this once) according to the OS specific instructions below.

Installing and loading the package in Windows

First, ensure that you have installed R and downloaded the correct package for Windows from the Betwise
website, as above.

Assuming you have downloaded the package to the directory C:\betwise, open up R for Windows.

Once R has booted and you are at the R command prompt, type:

> install.packages("/betwise/betfair_1.0.0.zip", repos=NULL)

Now, load the package for the first time - the packages on which betfaiR depends will be loaded at this
point. Type:

> library(betfair)

And wait for the install to finish. You can now use betfaiR. Next time you use R, you’ll be able to type
library(betfair) without having to wait for the dependent packages to load.

Loading the package in Mac OS X

First, ensure that you have installed R and downloaded the correct package for Mac OS X from the
Betwise website, as above.

Assuming you have downloaded the package to the directory /Users/username/betwise, open up R for
Mac OS X, using the R GUI for Mac OS X.

In the GUI window, go to Packages & Data, then select Package Installer.

Within the new dialog box called R Package Installer select Local Source Package from the drop
down list at the top of the dialog (the default says CRAN (binaries)). Now, click the Install button
towards the bottom right of the dialog box.

A file selection box will appear, navigate within it to the directory where the betfaiR package is installed
© 2011 Betwise Ltd 5 v. 1.0

http://www.betwise.co.uk/betfair

(in our example /Users/username/betwise/betfair_1.0.0.tar.gz) and select the package file by
highlighting it. Click Open in the file selection box and the package will be installed, including all
dependencies.

When you are done, go to the R command line and type

> library(betfair)

And wait for the install to finish. Next time you use R, you’ll be able to type library(betfair) without
having to wait for the dependent packages to load.

Loading the package in Linux

First, ensure that you have installed R and downloaded the correct package for Linux from the Betwise
website, as above.

Assuming you have downloaded the package to the directory /home/username/betwise, open up R for
Linux - usually R at the shell prompt.

Once R has booted and you are at the R command prompt, type:

> install.packages("/home/username/betwise/betfair_1.0.0.tar.gz", repos=NULL)

Now, load the package for the first time. Type:

> library(betfair)

And wait for the install to finish. Next time you use R, you’ll be able to type library(betfair) without
having to wait for the dependent packages to load.

Getting help with the betfaiR package

Please bear in mind that the betfaiR package is free software and comes with absolutely no warranty.

However, for free help, the Betwise Question and Answer forum is the best place to go to get help with the
BetfaiR R package - likewise, if you are an R expert (or “wannabe expert”) actively using the package,
your input there will be much appreciated.

Register for free on the Betwise site and post your questions and answers to:
http://answers.betwise.net/

For general help with the R language, there are plenty of forums (and books, including many useful free
guides) available, including the official R mailing lists at http://www.r-project.org/

© 2011 Betwise Ltd 6 v. 1.0

http://answers.betwise.net/
http://www.r-project.org/

Chapter 3 - Login and market search
In this chapter we’ll describe how to log in to a Betfair account and search for markets, since these are
prerequisites for most typical uses of BetfaiR. We’ll also show how to build and use simple scripts within an
interactive BetfaiR session to enhance productivity. Newcomers to the R language may find this Chapter
particularly helpful in showing how to use R functions, create R objects and extract data.

We’ll assume before we start that you have an active Betfair account as well as a working installation of R
and BetfaiR on your system (if not or you are unsure, see “Installing R and BetfaiR” in Chapter 1).

Let’s get started

Most BetfaiR sessions start naturally by logging in to a Betfair account via the Betfair API (as most web
based Betfair sessions start by logging on to the Betfair website interface). Logging in to the Betfair API is
a prerequisite to using any other BetfaiR function.

However, before we can log in, we have to ensure that all the functions from the Betfair package are
available within our R working environment by loading the Betfair package, as below:

> library(betfair) #load BetfaiR package

Now you have the Betfair package loaded, to see a list of all the functions available within the BetfaiR
package, you can try this:

> ls("package:betfair")

Logging in via the API

To login, we need to use the login function and, as when accessing the website, supply the username of
the Betfair account, the password for that account, and, additionally, the API code in order to access the
account programatically. For all accounts, an API access code of ‘82’ can be used (see Appendix 1 for a
discussion of BetfaiR API product codes available).

As with other BetfaiR functions, the login function name simply adopts the name of the Betfair API call,
with necessary, and/or optional arguments. Thus, go to the R command line and substitute the
appropriate arguments below with your own user credentials:

> login(username, password, api_access_type)

Now you should be logged in to BetfaiR and can use any other function in BetfaiR.

Remember, to create variables in R, just type the variable name and assign a value to it, as follows:

> username = "mybfaccountusername"
> password = "mybfaccountpassword"
> api_access_type = 22 #for the free API, different codes exist for paid #use

The mechanics of accessing the API securely are hidden from the user with login as in every function,
such as the web services transaction (which currently uses SOAP) necessary for a secure connection to the
exchange.

Further complexity is hidden from the user in the form of maintaining state for the connection with

© 2011 Betwise Ltd 7 v. 1.0

Betfair, since one of the return values from every Betfair API function (including login) is a unique API
sessionToken, along with log and error output.

To interact with the betting exchange programmatically, the unique sessionToken is explicitly saved and
passed to any subsequent API call. However, in the spirit of keeping the interface simple to use, each
sessionToken in BetfaiR is stored behind the scenes for every function call and implicitly supplied to
further API functions – so that users can concentrate on what API calls they want to make rather than
the mechanics of how they are made.

Therefore, login is as simple for the quantitative or programmatic user of BetfaiR as it is for an
interactive website user who supplies their user credentials once (which, like the API sessionToken, are
then referenced by a cookie token for subsequent transactions).

Enough on the details of how sessionTokens are handled (they just are, so you don’t have to worry about
it).

Searching Available Markets for Different Sports

Now we are logged in, let’s look at interrogating some sports betting markets. Which markets to look at?
Well, which market types or events are available on Betfair? Try:

> event_types = getAllEventTypes()

Here we use the function call for getting all event types in BetfaiR and save it to the variable (or object in
R parlance) event_types (nb. in R you can use = or <- for assigning values to variables and objects).

Let’s look at a subset of the event_types available, as returned by our API call - let’s say the top 20 event
types in the list, using the inbuilt head function:

> head(event_types, 20)

Horse Racing events account for the most actively traded daily markets on Betfair year round, so that’s
the event type that we’re going to drill into, in order to see what individual betting markets are available.
To see what markets exist for this event type, try:

> horseracing = getAllMarkets(eventTypeIds=list(int=7))

Betfair has a vast array of markets available on all sports (ie. event types), and the BetfaiR function
getAllMarkets will fetch all of them, depending on which event type(s) are supplied as arguments. In this
example, we will supply the argument eventTypeIds to the function, so as to return event details for the
identifier “7”. The eventTypeId of 7, as we have just seen, is an identifier used only for horseracing
markets currently available in Betfair.

This call is equivalent to going to the Betfair website interface and clicking on Horse Racing under the list
of All Sports, then selecting all events in the various submenus.

Having used the API to retrieve all horsesracing events and save them to the object horseracing, we can
now manipulate that list of events programmatically.

The first thing to notice about our horseracing object is that there are an awful lot of types of market
available for each horseracing event. We will typically be interested in markets that meet specific criteria,
for the purpose of market analysis and/or betting, trading and arbitrage. How do we select the right type
of market programmatically?

© 2011 Betwise Ltd 8 v. 1.0

Note that no further BetfaiR API calls are needed at this stage, we have all the information we need for
the analysis and selection of suitable markets within the local in-memory object horseracing, and we
can simply leverage R’s data manipulation capabilities to extract markets we are interested in.

Our horseracing object contains 16 columns we can search over to find relevant events - we can see what
these are by using the names function as follows:

> names(horseracing)

 [1] "Market ID" "Market Name" "Market Type"
 [4] "Market Status" "Event Date" "Menu Path"
 [7] "Event Hierachy" "Bet Delay" "Exchange Id"
[10] "ISO3 Country Code" "Last Refresh" "Number of Runners"
[13] "Number of Winners" "Total Amount Matched" "BSP Market"
[16] "Turning In Play"

So let’s narrow down the list of markets that might be interesting - a common search might restrict events
to the current day’s horseracing markets only, and perhaps to one country only.

There’s lots of ways to approach this search. Below, we convert the current system date and the betfair
“Event Date” (normally including hours, minutes and seconds) to year-month-day format and then
compare them in order to create a filter that can subsequently be applied to meet the criteria of “show
today’s markets only”.

> datefilter = format(Sys.Date(),"%Y%m%d") == format(horseracing$"Event Date","%Y%m%d")

The object datefilter can be used to filter against horseracing events to select only those with the
current date (we can also easily adapt this for any other object that requires date comparisons).

Next, let’s create a filter that can be applied to horseracing events to extract those that pertain to a
certain country - in the case below, all events in Great Britain:

> countryfilter = horseracing$"ISO3 Country Code" == "GBR"

Finally, let’s combine the two filters and apply them to our object horseracing in order to create an
object that will only contain details on all horseracing events occurring today in Great Britain:

> uk_horseracing_today = horseracing[datefilter & countryfilter,]

That still makes for a large number of markets - in particular, the object includes exotic markets for each
race, since each race generally has multiple markets related to it. For example, a single race will typically
have different markets for win only betting; place betting; betting without the favourite; forecast, reverse
forecast and tricast betting; markets that are one-on-one matches between selected horses from the race,
and so on. What if we want to programmatically extract win only markets (generally the most liquid
markets in British horseracing), ignoring all other market types?

If we want to find out more about each market, it is easy to display a vector or two from the
uk_horseracing_today object which tells us more. Descriptions of market types can be found in the
“Menu Path” and “Market Name” vectors. Indeed, we can use these vectors this with the larger
horseracing object too, if we want to identify all markets ‘by eye’.

The value of creating and applying filters comes when we want to automatically select certain event types,
either to re-use such statements for rapid, interactive programming in BetfaiR, or within automated
scripts that can be run without the user’s presence. Each of the filters we are showing can be saved and re-
used for this purpose.

© 2011 Betwise Ltd 9 v. 1.0

So, to spot horseracing win markets only for each race, the logic is less direct than with our date and
country examples, but we can still automatically extract them. To do so, we’ll use the grep function
(essentially a text search function) in R to explicitly match the market types that we do not want. After we
filter out all the exotic markets by grepping for them, the ones we have left are all the win markets. Since
there is no regular expression to indicate what win markets are, we have to specify all other types instead.
The upside of defining this expression is that you’ll also see how to specify any of those other market types
if you want them. Note that whilst using grep differs from the way we created filters for country and date,
grep would have been another way to acheive the same result.

With grep, instead of searching for an exact match of values which return TRUE or FALSE, as with the
equality operator ==, we can search the text in one vector for a sequence of regular expressions and return
their location in the vector as a list of values relating to each row. Let’s start with the “Menu Path” vector.
Typing:

> uk_horseracing_today$"Menu Path"

will (typically) list tens to hundreds of daily horseracing markets (corresponding to each row of
uk_horseracing_today) in the UK with different market descriptions (corresponding to each description
in the “Menu Path” vector). The first time you go through these Menu Path listings - whatever the sport -
you can put together rules that can be used to extract market descriptions for those events you typically
want to interrogate or explicitly don’t want in future. First time up, this is always a case of manual
inspection. In our example, searching through uk_horseracing_today for win only markets, we’ll
assume that we are already familiar with these markets and know that we do not want any events which
include the following text in the “Menu Path”:

> unwanted1_filter = grep("antepost|acca|TBP|match|forecast|stall|without|daily",
uk_horseracing_today$"Menu Path", ignore.case=TRUE)

Given that we are looking for win only markets, our search would be much easier if the “Menu Path” or
“Market Name” contained the words “Win only” or similar - then we could explicitly search for those.
Other markets are more helpfully named, but horseracing win markets just carry the description of the
event itself (eg. “1m Hcap”) rather than including the generic market type. Therefore, we have to exclude
those types we don’t want above, so now we know the row numbers for these are in the variable
unwanted1_filter. This filter is insufficient to capture place markets, however, since, unhelpfully, the text
“To Be Placed” is included instead in the “Market Name” vector. So we’ll use the same principle to
exclude these markets also (this time applying our grep to “Market Name”), and save them to a second
filter as follows:

> unwanted2_filter = grep("place", uk_horseracing_today$"Market Name",
ignore.case=TRUE, ignore.case=TRUE)

The exact return values displayed above will vary for each set of daily markets, of course. Note also the
option to ignore.case in the grep function. We include that here since some of the terms we are
searching in the “Menu Path” or “Market Name” may be second or third words (and may not therefore be
capitalized). There are plenty of other arguments to get grep working exactly the way you want - for some
pointers (as with every other function in R), try using args with the function as in:

> args(grep)

or, for comprehensive documentation with examples, simply

> help(grep) #nb. ?grep works too

© 2011 Betwise Ltd 10 v. 1.0

Ok, let’s return to our search for win markets.

The grep function returned a list of values corresponding to rows in the vectors “Menu Path” and
“Market Name” which contained all “exotic” markets. Now we want to save the subset of
uk_horseracing_today which excludes all these rows (in other words, to return a new vector of rows that
only contains all win markets). Using subscripting, we can thus return all rows in the
uk_horseracing_today object which exclude this new vector and save these to a new object:

> win_markets = uk_horseracing_today[- c(unwanted1, unwanted2),]

Above we concatenate our unwanted rows c(unwanted1, unwanted2), and then subtract these rows [
- from our uk_horseracing_today object.

At last, we have all win horseracing markets that are off today in the UK, saved in a new object
win_markets.

Surely there has to be a quicker way of extracting this data in future? There is, and this is the approach
we’ll take when revisiting this example in future.

Using code snippets for greater productivity

Ok, it’s time to take stock. We haven’t got into analysis of what’s going on in markets themselves, or
looked at betting opportunities, but the things we’ve done are sufficiently valuable that it’s likely we’ll want
to re-use them next time we use BetfaiR for any of these tasks.

We’ve loaded the BetfaiR library, logged in to a Betfair account using the API, previewed all event types
and subsequently searched for all horseracing win only markets occurring today in Great Britain (and in
doing so covered the general principles of extracting data for any sports market).

Suppose that playing in daily GBR horseracing win only markets is our betting speciality. We now have
the commands needed to find such markets programatically, but typing them every time is labourious and
remembering the exact syntax is prone to error. Moreover, we may wish to automate these tasks in future.

We can rapidly reduce the time needed both to log in to Betfair with our account details and find these
markets by saving the few commands to a file in our working directory and loading that file on the
command line the next time we use BetfaiR.

In this case, we will create 2 files, since loading the BetfaiR library and logging in is something we may do
separately in future. Indeed, we can build up a library of code snippets for various interactive tasks. We can
also re-use these code snippets to build completely automated scripts which are run in batch mode (and do
not therefore require starting the R environment).

So, let’s leave R (q()) and create a file in the local directory that we can load up with commands to be
executed by R. We’ll call the first file login.R. We can use any plain text editor to create it, typing in the
following lines of code which mirror what we have already done on the command line:

require(betfair) #load the BetfaiR library, good for this session
user = "username" #replace with your actual account username
password = "password" #replace with your real password
code = 82 #Free API access code - see Appendix A
login(user, password, code) #log in!

Quit and save the file, go back into the R environment and simply type at the command line:

© 2011 Betwise Ltd 11 v. 1.0

> source("login.R");

In one step we executed all the code already discussed to load the BetfaiR library and get into our
account, without having to bother with any of the details.

Let’s do the same thing for finding all current daily win horseracing markets in the UK, by creating a
script based on the commands already shown to programmatically find these. Again, create a file in our
working directory, called uk_win_markets.R with the following orderly aggregation of commands we
have already discussed:

horseracing = getAllMarkets(eventTypeIds=list(int=7));
datefilter = format(Sys.Date(),"%Y%m%d") == format(horseracing$"Event
Date","%Y%m%d");
countryfilter = horseracing$"ISO3 Country Code" == "GBR";
uk_horseracing_today = horseracing[datefilter & countryfilter,];
unwanted1_filter = grep("antepost|acca|TBP|match|forecast|stall|without|daily",
uk_horseracing_today$"Menu Path", ignore.case=TRUE);
unwanted2_filter = grep("place", uk_horseracing_today$"Market Name",
ignore.case=TRUE);
win_markets = uk_horseracing_today[- c(unwanted1_filter, unwanted2_filter),];

Let’s save the file and go back into R to see everything working.

This time around, before we let these code snippets do their magic we’ll list and then clear out all the
objects in the current working environment which may be left over from our previous session:

> ls() #list names of objects in R working environment
> rm(list = ls()) #remove all objects from current working environment
 #don't do this if you still want to work with these!
> ls() #no objects left to work with

Then we’ll run our login code snippet again, which is a prerequisite for searching all markets, followed by
our code snippet to create an object for uk win horseracing markets, for today only.

> source("login.R");
> source("uk_horseracing_markets.R");

If we list all objects again, we’ll see all the objects we’ve previously created immediately at our disposal:

> ls()
 [1] "code" "countryfilter" "datefilter"
 [4] "horseracing" "password" "uk_horseracing_today"
 [7] "unwanted1_filter" "unwanted2_filter" "user"
[10] "win_markets"

Now win_markets itself contains market metadata for each of the daily horseracing markets we may be
interested in interrogating further. We can see the available columns with:

> names(win_markets)

There are all sort of ways we can use this metadata to apply other automated filters for markets we are
interested in, such as quickly scanning for highly liquid markets (ie. where large amounts of money have
already been traded or matched) as follows:

> win_markets[win_markets$"Total Amount Matched" > 500000,]

© 2011 Betwise Ltd 12 v. 1.0

Or to look for specific types of race (in the case of our horseracing example), such as all 5 furlong sprints
(using the “Market Name” field to match “5f ”):

> win_markets[grep("5f", win_markets$"Market Name"),]

We’ll be working further with our final data frame win_markets in the next chapter, as we start to retrieve
data from markets that are of interest.

© 2011 Betwise Ltd 13 v. 1.0

Chapter 4 - Getting market data
In this chapter we’ll look at how to retrieve live market data from markets that are of interest. (To see how
to find market types and events that are of interest - including automating search criteria - refer to
Chapter 3). In particular, we will look at retrieving dynamic price data from a market we have already
identified, since market price data is a prerequisite to any meaningful market analysis - as well as to betting
and trading activity.

As a starting point, let’s use the data frame win_markets that we created in Chapter 3. This data frame
includes all daily win markets in UK and Irish horseracing.

Recall that we can create the daily win_markets object by running the following scripts from within the
R environment:

> source("login.R"); #See Chapter 3 for details
> source("uk_horseracing_markets.R"); #See Chapter 3 for details

From the win_markets object we can interrogate events to find those that are of most interest. The
critical data element that we need to extract from the data frame that represents each event of interest is
the Betfair market ID, since it enables us to retrieve dynamic market data, including prices. This element is
explicitly shown in the first column of the win_markets data frame with the name “Market ID”, with
each row relating to a separate market. R also automatically assigns row names (each market is
represented by a row) of the Betfair market ID to each row in the data frame. Thus, we can also say:

> row.names(win_markets)

in order to list all market IDs available in this object. We can therefore save the set of market IDs to a
single variable and use one of R’s looping constructs to visit each market automatically and then “do”
something with each market ID (like get market prices, bet or trade on each market and so on). To do
that, we have to know how to perform these operations on one market ID only. Here we look at the case
for retrieving market prices for one market ID.

One market ID may be picked ‘by eye’ after reviewing the list of events manually or via scripted filters, as
shown in various examples in Chapter 3. A Betfair market ID may also be supplied automatically from an
external source such as Betwise’s Smartform database for horseracing data (as discussed in Chapter N),
since Smartform already supplies daily Betfair win market IDs, as per the Betfair API, with full market
descriptions.

For this example, we’ll use the data in our win_markets objects to select the most traded market of the
day’s racing on 6th June 2011 (at a time of 10.44 am BST). To do so we rank the data with the useful R
function order that orders vectors from lowest to highest ranked. This is typically useful in the context of
the BetfaiR package for the purpose of ranking market prices, market volumes and market times (as for
ranking the “Event Date”). Thus, to rank all markets in win_markets by time, from lowest to highest:

> win_markets[order(win_markets$"Event Date"),]

To reverse the order, for example to rank by the total amount matched, from highest to lowest (so that the
most traded event is shown first) we use a minus - before the variable that is to be ranked (and then save
this ranked data frame to a new object) as below:

> markets_by_liquidity = win_markets[order(-win_markets$"Total Amount Matched"),]

Thus, to get the market ID of the most traded event from our newly ranked data frame we can say:

© 2011 Betwise Ltd 14 v. 1.0

marketId = markets_by_liquidity[1,1] #first column is market Id
 #first row is highest traded

This particular example gives us a market ID of 102920485, saved in market_id.

Let’s get more detailed market data for this market, using the getMarket function in BetfaiR, saving the
return values to an object, market_data.

> market_data = getMarket(marketId)
 #or pass in numberic id, ie. getMarket(102920485)

This function returns a list of named values, referencing 27 different aspects of the market. Let’s find out
what they are:

> names(market_data)
 [1] "countryISO3" "discountAllowed"
 [3] "eventTypeId" "lastRefresh"
 [5] "marketBaseRate" "marketDescription"
 [7] "marketDescriptionHasDate" "marketDisplayTime"
 [9] "marketId" "marketStatus"
[11] "marketSuspendTime" "marketTime"
[13] "marketType" "marketTypeVariant"
[15] "menuPath" "eventHierarchy"
[17] "numberOfWinners" "runners"
[19] "unit" "maxUnitValue"
[21] "minUnitValue" "interval"
[23] "runnersMayBeAdded" "timezone"
[25] "licenceId" "couponLinks"
[27] "bspMarket"

Note that some of these values overlap with the metadata already returned by getAllMarkets, which is
the function we used to originally create win_markets, however getMarket is far more detailed. In
particular, we get all the static data pertaining to contenders in the event (called runners in Betfair
parlance, whatever the sport, from horseracing to tennis), along with dynamic data relating to any
changes in the market since it was set up.

Note that we can also call getMarket and return just one of the columns in one line (using the dollar
notation to specify which column we want), as in:

> getMarket(marketId)$runners

The above returns 4 columns itself. What if we just wanted the names of the runners currently lined up for
this market, along with their Betfair selectionId? The function call together with results returned are
shown below:

> getMarket(marketId)$runners[3:4]
 name selectionId
1 Carlton House 5011661
2 Recital 5058628
3 Pour Moi 5461697
4 Seville 5006736
5 Native Khan 4830850
6 Ocean War 4844446
7 Vadamar 5053314
8 Memphis Tennessee 4933859
9 Masked Marvel 4980623

© 2011 Betwise Ltd 15 v. 1.0

10 Treasure Beach 4750407
11 Pisco Sour 4830851
12 Marhaba Malyoon 5009750
13 Castlemorris King 4911081

Horseracing fans will recognize above the contenders for the 2011 running of the Epsom Derby.
Unsurprisingly, this event was the most traded of the day in question up to that point, with over 1 million
GBP matched before 11 on the morning of the race (relatively high liquidity for an event with over 5
hours left before the start).

So much for the contenders. Let’s see what’s going on with current market prices for these. To do so, we
need to turn to one of a few functions that enable us to return market prices and volumes for each
contender to several levels of market depth - generally it is the level of depth and additional data that
changes with each of the market data retrieval functions available.

Let’s start by using our basic price retrieval function, getMarketPrices.

There are a few possible arguments relating to accounts and markets, but the defaults are generally fine, so
that we are only required to supply a valid marketId. Thus, to get the current prices for backing or laying
and save those (along with other market data variables) to an R object we can say:

> market_prices = getMarketPrices(marketId)

getMarketPrices lists 12 different objects, as follows:

> names(market_prices)
[1] "bspMarket" "currencyCode" "delay" "discountAllowed"
[5] "lastRefresh" "marketBaseRate" "marketId" "marketInfo"
[9] "marketStatus" "numberOfWinners" "removedRunners" "runnerPrices"

There is lots of additional information in here, some of which replicates the market data elements we have
already seen returned by other functions. The key element that we are looking for in terms of price data is
“runnerPrices”, which contains all back and lay prices, together with volumes available for each price, to
three levels of depth for the market in question. Thus, we can also say:

> market_prices$runnerPrices

to return all data that we want. As before, we can be even more succinct with our code in order to capture
market prices using the function call and return the prices in just one line, using the function call as
follows:

> runner_prices = getMarketPrices(marketId)$runnerPrices

So runner_prices now contains the data we are after. Let’s look at this object in more detail. The data
structure is a list of runners, each of which contains another list pertaining to details for that runner. Thus,
we can see how many runners are competing in the race with

> length(runner_prices)

Each runner is a named integer within this list. To get all market details for the first runner in the list, we
can say:

> runner_prices[[1]]

Or to get at the back prices only, we can say (with return values shown after the command):

© 2011 Betwise Ltd 16 v. 1.0

> runner_prices[[1]]$bestPricesToBack
 amountAvailable betType depth price
1 48.02 L 1 3.75
2 61.79 L 2 3.7
3 92.52 L 3 3.65

Note that the betType of L relates to the Lay bet that would have been placed into the market, though
from our perspective, this now represents an amount that is available to back.

Since the function getMarketPrices returns a depth of 3 for available back prices and lay prices, all
prices are included within the detail for each runner. The depth of 3 relates to prices that are “at the
market” (the first row shown) as well as prices that are once and twice removed from the current market
level (rows 2 and 3 respectively). Let’s look at how to retrieve the current market data only for the back
price, back volume, lay price and lay volume.

To do so manually for the first runner in the list, we can say:

> runner_prices[[1]]$bestPricesToBack[1,4]
[1] "3.75" #the best current price available for the first runner in the list

To iterate over all these values for each runner, we can use the foreach package in R, loading the library
(as with the BetfaiR package), as follows:

> library(foreach)

Then:

foreach(i=runner_prices) %do% i$bestPricesToBack[1,4]
#returns the current best price available for each of the 15 runners

If you prefer the prices not in a list, you can concatenate them together with the ‘c’ function, and save
them to a new vector:

> best_back_prices = foreach(i=runner_prices, .combine=c) %do%
i$bestPricesToBack[1,4]

A list of the best back prices in the market is useful in its own right for all sorts of reasons, such as looking
at the market overround. However, it doesn’t allow us to easily see which price is available for which
runner. Thus, it would be useful, for example, if we were thinking of placing a bet to easily look up the best
price for a runner we may be interested in backing, using its selection Id.

To overcome this, we can label each price easily by selection Id, for example, with :

> best_back_prices = foreach(i=runner_prices, .combine=c) %do% {x =
as.numeric(i$bestPricesToBack[1,4]); names(x) = i$selectionId; x}

So, above, the ‘i’ variable in foreach iterates through each of the items in runner_prices, returning
whatever is returned by the program statements inside the curly brackets {}, and combining the results
together with the .combine function. Note that we also convert each price to a numeric value in the
process, as in as.numeric.

Now, if we have the relevant runner ID for the contender we are interested in, we can extract the best
price available from our new best_back_prices object (where “5011661” is the runner ID we are
interested in) thus:

© 2011 Betwise Ltd 17 v. 1.0

> best_back_prices[names(best_back_prices)=="5011661"]

Other questions about further levels of prices available can be answered similarly. So, “What is the second
best lay price available for each selection ID?”:

secondBest = foreach(i=runner_prices) %do% {
x = as.numeric(i$bestPricesToLay$price)
Some runners might not have prices or only one price...
if(length(x)>1) {
x = max(x[-which(x==max(x))])
}
x
}

Let’s also assign names to the secondBest object…

names(secondBest) = foreach(i=runner_prices,.combine=c) %do%
i$selectionId

As we have seen, the getMarketPrices function returns the current back and lay price, plus two further
levels of depth. By current price we mean the best price at which the market is guaranteeing available
matches - either to back or to lay. Of course, there are many more prices - each to varying degrees of
volume - available in the market as a whole. What if we want to see all of the prices in the market, and
the volume for each price, for all runners?

This is where getMarketPrices needs a big brother, and finds it in the shape of
getCompleteMarketPrices, which returns all data for every runner in the market.

Using getCompleteMarketPrices is just the same as getMarketPrices, thus:

> full_market_prices = getCompleteMarketPrices(marketId)

Use of the return values from getCompleteMarketPricesCompressed is a little different from functions
we have seen so far, in that our new object full_market_prices is a list of lists, where each runner is
represented as a list named by its selectionId. Therefore, the names of our returned object will vary
according to each market. Two variables, the marketId and the InPlayDelay for the market, are constant.
Thus:

> names(full_market_prices)
 [1] "marketID" "inPlayDelay" "4750407" "4844446" "4933859"
 [6] "5011661" "5009750" "4830850" "5058628" "4830851"
[11] "4911081" "5053314" "5461697" "4980623" "5006736"

Our runner object, represented by its Betfair selection Id, is itself a list of lists. Thus, to pick on one
selectionId from the above market at random, we can say:

> runner = full_market_prices$"4750407"
> names(runner)
 [1] "selectionId" "OrderIndex" "TotalAmountMatched"
 [4] "LastPriceMatched" "Handicap" "ReductionFactor"
 [7] "Vacant" "AsianLineId" "FarSPPrice"
[10] "NearSPPrice" "ActualSPPrice" "prices"

This time, having saved our runner object and interrogated it, we get back a generic list of named
variables that will apply to each runner in all types of market. But what are we looking at?

© 2011 Betwise Ltd 18 v. 1.0

Simply printing runner at the command line will unravel the list of specific values for each variable, most
of which are self-explanatory. The full description of each of the returned variables can also be found in
the official Betfair API documentation.

Below, we’ll concentrate on some particularly interesting variables that provide data not easily acessible
elsewhere.

LastPriceMatched gives the last price where there was a matched bet on this runner.
TotalAmountMatched shows us the total volume matched on this runner in this market up to the time of
the call Orderindex shows us where this runner was ranked in the market at the time of the call (eg. an
orderindex of 1 would be the market favourite) NearSPPrice and FarSPPrice are Betfair’s estimates of
the likely range of the Betfair SP (which is calculated once the event has gone “in-play”) based on the bets
taken so far at SP (as opposed to those matched on the exchange).

Of greatest interest is the prices variable, which contains all prices and volumes for each point on the
Betfair price ladder where there is an amount available to bet, both on the back and lay side of the
market, as well as on the Betfair SP market.

We can interrogate this data for a single runner as follows:

> runner$prices

There are 5 columns of data relating to this runner’s price and volume position within the market, with
self explanatory headings. There is much that can be done using R to manipulate and analyse the price
ladder, as we’ll show in the next chapter.

Furthermore, successive calls to getCompleteMarketPrices will produce some very interesting data for
graphing and analysis purposes, since we will have a time series of price and volume data for each runner.
Once we compile prices over regular time intervals we can apply technical analysis to our prices. We’ll look
at creating such an object in the next section.

Collecting complete market price time series

So far we’ve only covered single calls to get a snapshot of the market at any given time. Let’s create a
script that can grab lots of prices dynamically, in order to create a time series object.

There are a few fundamental coding differences to bear in mind when collecting market price time series
as opposed to making a single call at a single point in time.

Let’s start with the principle of using looping constructs to collect prices. There are several ways to create
looping constructs in the R language. The general principle for using a loop in this context is to explicitly
get market prices at some predetermined time interval and build up a data structure containing all those
prices. If we are using a script to collect prices that is ‘set and forget’ then we will want to use a loop that
continues to collect prices until some condition is met.

For example, we could say ‘get market prices’ at certain intervals (using the sleep function) to repeat for a
set number of those intervals. Below we do this by specifying 600 iterations (in the loop) of 1 second
intervals (by specifying 1 second sleep within the body of the loop. This will give us 600 seconds, or 10
minutes of market data, as follows:

> for (1:600) {
 #step 1 = get prices
 #step 2 = save the prices to a data structure

© 2011 Betwise Ltd 19 v. 1.0

 #we'll cover the code for getting and saving prices in the next #section
 sleep 1
 #step 3 = specify a time interval before the loop continues
 }

In the above case, the “until” condition is simply met at the point that the for function counter reaches
600. This might help for collecting random batches of prices; however, a generally more useful condition
is to collect prices in relation to the time of the event in question. To do this, we need to know what the
current time is, and then compare the current time to the time of the event.

Recall that we used the Sys.Date function to format and record the current date for comparison purposes
in Chapter 3. We can use its close relation, Sys.time(), to do the same thing for the current system time
as well as the time of the event.

To get the current system time in hours, minutes and seconds we can say:

> format(Sys.time(),"%H%M%S"))

If we want to use this time to compare against any other time within the same 24 hour period as a
numeric value, we can convert the value with the as.numeric function, thus:

> current_time = as.numeric(format(Sys.time(),"%H%M%S"))

We’ll also need the time of the event as a value to compare against. Let’s select the first event within our
win_markets object, as follows:

> first_race = win_markets$"Event Date"[1]

Recall that the “Event Date” in Betfair holds the date and time of the event. If the event we are
comparing is within the same 24 hour period we can leave out the date part and format the event time as
with the system time above, as follows:

> time_of_first_race = as.numeric(format(first_race,"%H%M%S"))

Now we can adapt our specified number of iterations with a while condition that compares the event time
with the current time, as follows:

> while (time_of_first_race > current_time) {
 #step 1 = get prices
 #step 2 = save the prices to a data structure
 #we'll cover the code for getting and saving prices in the next #section
 sleep 1 #interval before loop continues
 #step 4 = update the current time below
 current_time = as.numeric(format(Sys.time(),"%H%M%S"))
 }

So much for the principles of using loops to collect market prices. In the next section we’ll look at creating
new functions and a script that can build the time series structure.

Building a data structure containing market data time series

The script in this section uses a couple of functions for efficiency, which we’ll discuss before moving onto
the script itself. Creating functions in R is generally an efficient way to code when we want to avoid
repetition and enable re-usability. In this case, getPrices and update will help.

© 2011 Betwise Ltd 20 v. 1.0

getPrices is needed since the script will repeatedly call the getCompleteMarketPrices function and
pull out the values we want from the resulting data structure. getPrices will get the basic values for us
from this data structure - ie. the current back and lay price. Note also that we can get any value from
getCompleteMarketPrices by adapting this function.

update is needed since we will repeatedly use the same code to update the data structure with the prices
from the last timestamp, adding these prices to the records for each of the runners in the event.

If you’re new to R, you shouldn’t worry too much about how the functions shown below work - you can
simply use them in the script .

The getPrices function

getPrices function to pull out prices after fetching market data
Pick out the bp1, lp1 prices from the price ladder
Can easily adjust this to pick out other prices, like bp2, bp3, etc.

getPrices = function(P)
{
 f = as.numeric(P[,1])
 back = c(P[,2])
 lay = c(P[,3])
 idx = back == 0 & lay == 0
 f = f[!idx]
 back = back[!idx]
 lay = lay[!idx]
 lidx = which(lay>0,arr.ind=TRUE)
 #handle market runners without a lay price
 if(length(lidx)<1) return(list(back=NA,lay=NA))
 layPriceIndex = which(lay>0,arr.ind=T)[[1]]
 backPriceIndex = layPriceIndex - which(back[layPriceIndex:1]<1)[[1]]
 return(list(back=f[backPriceIndex], lay=f[layPriceIndex]))
}

The update function

Update the time series 'data' with columns for each runner's at the market
price and volume

update = function(data, prices, runners)
{
t = getLastTimestamp(TRUE)
v = foreach(r = runners$selectionId) %do%
{
z = prices[[r]]
if(!is.null(z)) {
 v=unlist(c(z$LastPriceMatched,getPrices(z$prices),z$TotalAmountMatched))
}
else {
 v = rep(NA,4)
}
names(v) = paste(rep(runners[runners$selectionId==r,"name"],4),
 c("LastPriceMatched", "BP1", "LP1", "Volume"))
v
}
v = xts(rbind(unlist(v)),order.by=t)

© 2011 Betwise Ltd 21 v. 1.0

if(is.null(data)) return(v)
else return(rbind(data, v))
}

Complete script to collect prices

The below script runs as a complete example, including getting the next market ID of the day at the start
of the script. This ID (nm below) can of course be replaced by any preferred market ID from any sport.

Get the next market id for horse racing (13):

x = getActiveEventTypes()
nm = x[x$id==13,]$nextMarketId
gm = getMarket(nm)
cat("Next market menu path", gm$menuPath," ID=",gm$marketId, "\n")

The 'runners' data frame can map runner names to selection IDs

runners = getMarket(nm)$runners

We build up the time series of runner prices and volumes in an xts
data frame called 'data' which we initialize to NULL.

data = NULL
p = getCompleteMarketPricesCompressed(nm)
cat("This is an example, you can press <CTRL>+C to break out of this loop
early and look at the data in 'data'\n\n")
j = 0

We loop for 100 seconds of data, or until the race begins, whichever
comes first:

while(p$inPlayDelay==0 && j < 100){
data = update(data, p, runners)
cat("Number of data points: ",nrow(data)," market time: ",getLastTimestamp(),"\n")
j = j + 1
Sys.sleep(1)
p = getCompleteMarketPricesCompressed(nm)
}

Note that the loop that we discussed earlier for collecting prices up until a certain point using while is
adapted in our script above to continue collecting prices “whilst” the inPlayDelay is a value of zero. This
effectively does the same thing as collecting prices up to the scheduled time of an event, in that once an
event start the inPlayDelay is a value greater than zero. Thus, at this point the script will stop.

Conversely, we could use this test in order to collect prices in running (ie. during an event), by first testing
for inPlayDelay>0 and then collecting prices while(p$inPlayDelay>0).

To run this example script interactively, save all the R code above to a file (including the two functions
getPrices and update) and call it say “collect_prices.R”.

We can run this code from within the R environment (as with example scripts from previous chapters) by
typing:

> source("collect_prices.R")
Number of data points: 1 market time: 2011-08-07T12:12:57.245Z

© 2011 Betwise Ltd 22 v. 1.0

Number of data points: 2 market time: 2011-08-07T12:12:56.494Z
Number of data points: 3 market time: 2011-08-07T12:12:59.535Z
Number of data points: 4 market time: 2011-08-07T12:13:00.659Z
Number of data points: 5 market time: 2011-08-07T12:13:01.850Z

The output from running this script at the command line is also shown above. The output itself is
described in the script with the cat function. cat is used here to print out basic details about each
iteration of the loop that is used to add more data points to the data frame at each timestamp.

Once we have completed the loop - either programmatically, as in the case of a market going “inplay” in
our scripted example, or manually broken out of it - we can extract time series data for each runner from
the resulting data frame.

By default we’ve called this data frame data in our script, but of course it can be any name according to
the markets that you are collecting.

Going back to the R prompt, to interrogate the specific data fetched in this script:

This shows us the names of the columns of data we just collected:
names(data)

Using this script we will return the following values for each runner (where BP1 stands for the ‘at the
market’ Back Price and LP1 stands for the ‘at the market’ Lay Price):

"Runner name LastPriceMatched" "Runner name BP1"
"Runner name LP1" "Runner name Volume"

In our example script, all the columns in the data frame are named after the runner along with the data
type being collected, as detailed above.

Thus, we can manipulate data as follows:

> runner_name_back_price = data[, "runner name BP1"]
to rename the back price column for a specific runner as a single vector
to use for plotting.

If we just want to look at BP1 for example, we can do this:

> bp1 = data[, grep("BP1",names(data))]
> names(bp1)

In the next chapter we’ll look at functions in BetfaiR for analysing the market data that we’ve collected
using the above techniques.

© 2011 Betwise Ltd 23 v. 1.0

Chapter 5 - Market Price Analysis and Visualisation.
This chapter explains how to derive and visualise market data. By now, we assume you’re familiar with the
function GetCompleteMarketPricesCompressed, and are also comfortable with building and
manipulating a data frame of market prices by iterating over this function, as explained in the previous
chapter.

Visualising the price ladder with plotPrice

For any runner in any market, there will be a series of possible bet amounts available at different prices
(according to Betfair price increments - see Appendix 2 for a listing of the prices available).

Visualising the price ladder is a highly useful feature. It’s hard to comprehend what an array of prices and
different amounts actually mean without visualising them. As such, a visualisation of the price ladder
(with different sides of the graphic for back and for lay, for every price where there is a bet amount
available) is often provided in expensive third party software built upon the Betfair API. With the BetfaiR
R package you get this thrown in, by leveraging the plotting capabilities of R through the BetfaiR
function plotPrice.

plotPrice shows you the price ladder by runner, with two sides of the resulting plot for back and lay
prices, with every amount (volume) available shown at every back price and lay price. You can decide upon
the “depth” of prices to be shown as an argument to the plot function. For example, a depth of 3 will
show all prices and available volumes according to the closest 3 back and lay prices, as per the default
Betfair interface. Further, the volume available to bet at each price is shown as a proportional bar, scaled
automatically according to all amounts displayed within the plot. This makes it easy to see the weight of
money, and possibly confidence, behind each runner in a given market, providing a useful visual aid to
predicting price movement and market confidence.

A summary of the current back price, the current lay price, the total amount matched so far on the
runner in question, as well as the last price matched (as opposed to available) is also displayed on the plot.

To run the plotPrice function and create a price ladder visualisation for a runner we’re interested in,
we’ll first need to grab a snapshot of complete runner prices for the market we are interested in visualising,
using the getCompleteMarketPricesCompressed function. Further, since the price ladder is shown for
only one runner at a time, we’ll have to specify prices for the runner we are interested in and save this to a
new object. We can use an already fetched set of prices and supply the runner ID, or make a call to the
Betfair API whilst specifying only the runner we are interested in, for the purposes of running the plot.
We’ll show the latter method here.

First let’s assume you’ve logged in and have found a relevant Betfair market ID. Then, recall we can run
getCompleteMarketPricesCompressed with a runner ID attached as follows:

> runner_to_plot = getCompleteMarketPricesCompressed(103438705)$"4987995"
select an active market and a runner's "price ladder" within the market

Now we can run plotPrice to visualise the price ladder for this runner, which expects two arguments: i)
The runner object as above ii) The level of depth to display prices and volumes

Thus,

> plotPrice(runner_to_plot, width=7)

© 2011 Betwise Ltd 24 v. 1.0

will give us the graphic we need.

This provides a snapshot of the market as it stands since the last API call for one runner. If we are
capturing prices on an active event, we will see the volume (as represented by “Total Amount Matched” in
the plot above) increase exponentially for all runners the closer that the event nears the scheduled start or
offtime (“the off ” as it’s known in racing).

But we can do much more with market data, and show how BetfaiR can leverage more cool R packages
in the process.

Technical analysis plots with quantmod

Assume that we have run repeated calls to getCompleteMarketPricesCompressed, building an array of
prices with timestamps, as shown in the Chapter 4. Let’s say we have stored back prices for all runners in a
market in the variable shown as the default in the example script, data.

Now we can interrogate this dataset for the purposes of technical analysis, either whilst the market is still
active or as an historic data set.

First, let’s load up Jeff Ryan’s quantmod package.

> require(quantmod) # Popular quant package

Next we’ll pick a runner from data and use one of quantmod’s nice financial markets plots to chart the
prices over time.

> Pour_Moi = data[,"Pour Moi"] # Pick a runner
> chartSeries(Pour_Moi, ,major.ticks='seconds')
Classic price plot

With the plotting device open, we can calculate and provide appropriate extra detail for this plot on the fly,
so to speak, as we’ll see in the next few sections.

Calculating the market overround

The implied probabilities of the back prices in a betting market (at least in person to person, electronic
markets, such as the Betfair exchange) will tend towards 1. If the sum of implied probabilities in any given
market dips below 1, there is an immediate opportunity to make certain money by backing every runner to
varying amounts.

Thus, a natural tension between back and lay prices exists for the whole market around 1.0. The
percentage by which the market tips above 1.0, usually expressed as 100%, is classically known as the
overround in betting markets, in homage to the traditional market makers (ie. bookmakers) who create
their own markets and thus their own overround (aka profit margin).

Clearly, if we are thinking of backing a runner, on the whole our odds will be more favourable the closer
the market overround stands to 1. If we calculate this, we can also spot those rare “underround”
opportunities.

Manually, the overround is impossible to calculate and execute for all runners within the short timeframes
that such opportunities become available. Programatically, it’s trivial, as follows:

Compute overround
overround = as.xts(rowSums(1/bp1) - 1, order.by=index(bp1))

© 2011 Betwise Ltd 25 v. 1.0

Of course, the one-liner above does more than calculate the overround, it does so for each data point
corresponding to the back prices used in our existing plot, as well as representing it as a time series so that
we can easily add it as a new indicator.

We’ll show how to use this indicator in the next section.

Sophisticated technical analysis plots

Let’s not stop there – we can use the technical analysis types already integrated with quantmod to add
umpteen number of technical analysis trading indicators. In the example below, we do that, also specifying
Bollinger bands and the Relative Strength Indicator:

addTA(overround, col=2) # Add overround indicator
addBBands() # Add Bollinger bands
addRSI() # Add RSI

So let’s see a quick snapshot of our final technical analysis plot, showing Bollinger bands around the price
action, and bottom panels which include the new overround indicator and RSI.

So much for one runner, what about the market as a whole? How are the runner prices behaving with
regard to each other?

Another plotting function included in the BetfaiR package is our friend. This function, iprobs, plots the
implied probabilities over time for all the runners in the race, taking a dataset of back prices as the input.

The implied probability plot

Once you are into using R with datasets of Betfair prices (such as our example data above), there are all
sorts of useful plots that you can create to represent that data in interesting one. Here’s how to produce a
plot we like that illustrates this principle that was put together by Bryan for his talk at RFinance in 2011
(you can see slides from the talk here: http://www.rinfinance.com/agenda/2011/BryanLewis.pdf).

Note that the following script relies on using a suitable dataframe as shown in data, generated in the
previous Chapter.

Here we make a probability plot:
First, collect the bp1 prices together:

prices = data[,grep("BP1",names(data))] #create "data" first, of course!
Probability plot (needs the RColorBrewer package for nice colors)...
require(xts)
require(RColorBrewer)
pr1 = as.matrix(1/prices)
n = length(pr1[,1])
xx = c(1:n,n:1)
z = rep(0,n)
p1=par(xaxs='i',mar=c(4,4,1,2))
plot(xx,xx,type="n",ylim=c(0,1.1),xlab="Time",ylab="Market probabilities",xaxt="n",
 bty='n')
par(p1)
s = z
#clrs = rainbow(s=0.8,n=ncol(prices),start=0,end=4/6)
clrs = brewer.pal(ncol(prices),"BuGn")
for(j in 0:(ncol(pr1)-1))

© 2011 Betwise Ltd 26 v. 1.0

http://www.rinfinance.com/agenda/2011/BryanLewis.pdf

{
 k = j+1
 yy = c(s,rev(s + pr1[,k]))
 polygon(xx,yy,col=clrs[k],border=NA)
 s = s + pr1[,k]
}

p1=par(xpd=NA)
legend('top',col=clrs, legend=colnames(prices),ncol=ncol(prices),fill=clrs,cex=0.9,
 bty="n")
par(p1)

idx = index(to.minutes(prices[,1]))
idx = align.time(idx) - 60
idx = format(idx, "%H:%M:%S")
l = nrow(prices)
axis(side=1,line=0,labels=idx,at=seq(1,l,by=l/length(idx)),cex=0.55)
lines(x=c(0,nrow(prices)),y=c(1,1), col='white')
lines(x=c(0,nrow(prices)),y=c(0,0))
title ("Probabilities to Win")

What are we looking at? The fatter the band, the greater the share of the market taken by any individual
runner, and the lower the price. As implied probability bands shift from fat to thin and vice versa, we can
easily spot which runner prices are drifting and which are contracting. Useful indeed if you are into
trading with Betfair.

© 2011 Betwise Ltd 27 v. 1.0

Chapter 6 - Betting and Trading
This chapter shows how to use the BetfaiR package for betting and trading via the BetfaiR API. Here we
concentrate on the functions that are used in both betting and trading strategies rather than a discussion
of such strategies per se.

In Chapter 7 we’ll further illustrate the mechanics demonstrated in this chapter to show some example
applications of how these functions can be applied to real world betting and trading strategies.

Betting and Trading - what’s the difference?

To trade or to bet involves the same starting point since both a bet and a trade start with a transaction
either to back or to lay a contender in an event at a certain price.

A bet typically consists of the initial (back or lay) transaction only and will be left to stand until the
outcome of the event is known. This creates an open position (ie. liability) upon a certain contender until
the outcome of the event is known, when the position will be converted to a profit or loss.

A trade will typically include a second transaction, as well as the one above which is in the opposite
direction of the first (either back or lay) in order to close the position and realise a profit or loss on the
trade (ie. each set of two transactions) before an event is started or concluded (in the case of ‘in-play’
markets). Ideally, the trade will capitalize upon a favourable movement in the price of a contender which
means that a profit is made before the outcome of the event is known. In this sense, a trade is a bet upon
favourable movements in price in an event, whereas a bet is upon a favourable outcome of the event itself.
Several trades can thus be placed upon the same event and upon the same contender in an event, with
opportunities to trade both before the event starts and whilst it is ‘in-play’. Several bets can also be placed
on the same contender in the same event, but typically these will always be in the same direction (ie. to
back or to lay, depending on whether the bettor is expecting a win or loss result, respectively).

From the perspective of betting or trading using the BetfaiR package, the mechanics of executing a bet or
a trade starts with a single back or lay transaction - ie. a bet.

We’ll look next at how to place a bet, either to back or to lay. This can be the starting point of a bet or a
trade, or the closing transaction of a trade. Either way, the BetfaiR function used for the transaction is the
same.

Placing a bet

Placing a bet using BetfaiR is a simple process, though requires that you know exactly what you want to
bet on!

First, we’ll assume you have a market that you want to bet in and a runner in that market that you want
to bet on.

Next, we’ll assume that you know how much you want to bet (ie. stake), whether you want to back or lay
the runner in question (ie. bet to win or lose), and, last but not least, what price you want to strike the bet
at (it could be an exchange price or, if you are not bothered about a specific price, taking the Betfair SP).

placeBets is the function that places your bet for you, provided that you can specify all the above
parameters. There are additional parameters that should be specified depending on the market type you
may be playing in. In any case the values for these must exist alongside the common ones detailed above.

© 2011 Betwise Ltd 28 v. 1.0

Thus, a list of parameters might look like this:

> asianLineId = 0
#binary value, generally 0 for none Asian handicaps
> betType = "B"
#"B" to back or "L" to lay
> betCategoryType = "E"
#"E" for exchange bet (the usual option) or otherwise. Options are:
#"E", "M" (market on close), or "L" (limit on close)
> betPersistenceType = "NONE"
#what to do if a bet is unmatched when the event turns in play, options are:
#"NONE", "SP" (convert to starting price), or "IP" (persist in play)
> bspLiability = 0
#default is always 0
> marketId = 103666039
#select a valid market ID
> price = 11.0
#select a price in decimal format for a valid price increment
> selectionId = 3294401
#select a valid market ID
> size = 2.00
#select a stake in decimal format for a valid possible stake

Having set our list of parameters, we can now place a bet by listing these out within the placeBets
function, as follows (note that for this example the variable names are the same as the arguments
themselves):

> placeBets(list(asianLineId=asianLineId, betType=betType,
betCategoryType=betCategoryType, betPersistenceType=betPersistenceType,
bspLiability=bspLiability, marketId=marketId, price=price,
selectionId=selectionId,size=size))

All being well, the function will return the completed bet details as follows:

 averagePriceMatched betId resultCode sizeMatched success
1 21.0 16189019428 OK 2.0 true

These bet details should generally be saved to another object, which is necessary in case the bet is not fully
matched and we want to subsequently extract the betId to cancel or update the bet at a different price.
Indeed, the most important return value for a whole series of operations on bets - from enquiring as to
matched, unmatched and partially matched bets to updating and cancelling bets - is the betId.

In the meantime, let’s return to our placeBets example. Whilst the function works fine above,
remembering all the parameters and specifying them for more than one bet makes placeBets become
somewhat unmanageable.

As a result, newBet exists as a convenience object that contains all the fields required by placebet. The
usage is:

> placeBets(newBet(...))

So, more conveniently, we can save the individual bet details to an object created by newBet (in this case x)
and then supply them to placeBets thereafter as follows:

> x = newBet(asianLineId=asianLineId, betType=betType,
betCategoryType=betCategoryType, betPersistenceType=betPersistenceType,

© 2011 Betwise Ltd 29 v. 1.0

bspLiability=bspLiability, marketId=marketId, price=price, selectionId=selectionId,
size=size)

So we now use newBetto build up bet details - and placeBets to place them, passing the object created by
newBet to the latter function:

> placeBets(x)

Updating a bet

By updating a bet, we mean modifying the parameters of any bet that has not yet been matched. A bet
that has not been matched can be modified in terms of either its stake (increasing or decreasing the
amount to bet at the price originally specified) or, more commonly, its price - typically in order to ensure
that the bet is matched in the exchange market for the original amount.

Further options for updating a bet go beyond price and amount, and relate to the concept of bet
persistence, such that if a bet has been placed (and is unmatched) on the exchange, it can be modified
to persist after the pre-event exchange market has closed, either to be switched to a bet taking the Betfair
SP, or to persist during the in-play market, if one is available.

A bet that has already been fully matched is of course no longer modifiable, since there is a counterparty
who has taken up the other side of the transaction (in this case, a counter position can be adopted but this
will mean making another bet rather than modifying the original one).

The key functions for updating bets using betfaiR are updateBet and updateBets.

By way of example, let’s say that in the St Leger
(http://en.wikipedia.org/wiki/St._Leger_Stakes), we like the chances of Census. The current
market price on the Betfair exchange is 7.0. We want to make an extremely hopeful exchange bet of 2
gbp at a price of 1000.0 (extremely hopeful since such a bet is highly unlikely to be matched before the
event starts), using the following parameters supplied to newBet:

> size = 2.00
> marketId = 103709265
> selectionId = 4977051
> betCategoryType = "E"
> betPersistenceType = "NONE"
> bspLiability =0
> price = 1000.0
> #x = newBet(supply parameters above...)
> placeBets(x)

Sure enough, a call to placeBets returns the following:

> placeBets(x)
averagePriceMatched betId resultCode sizeMatched success
1 0.0 16261961768 OK 0.0 true

So far so good. Now we have an unmatched bet with a betId of 16261961768 at 1000.0 on Census.

However, near the event starting the bet still has not been matched, so we decide we will change the status
of the bet to Betfair SP if unmatched. In this case, we will no longer be accepting an exchange bet but
persisting the bet to be matched at Betfair SP.

© 2011 Betwise Ltd 30 v. 1.0

http://en.wikipedia.org/wiki/St._Leger_Stakes

To specify this, we need to supply the betId to the function updateBet. Let’s assume that the betId above
“16261961768” exists in the variable betId, we can update the persistence type as follows:

> updateBet(betId, newBetPersistenceType = "BSP", newPrice = NULL, newSize = NULL)

Likewise, updating other parameters of the bet (ie. price or size) will result in NULLS for the values that
we are not changing. Note that we can only change one aspect of the bet at a time, as per the Betfair
documentation.

Cancelling a bet

Alternatively, we can cancel a bet which has not been matched, using cancelBets. The form of this
function is simple. We need to supply the betId of the bet that we wish to cancel as an argument to the
function. Thus, if we have a betId 16276631963 for 2 gbp we will cancel as follows:

> cancelBets(16276631963)
 betId resultCode sizeCancelled sizeMatched success
1 16276631963 REMAINING_CANCELLED 2.0 0.0 true

Conclusion

We now have all the atomic functions we need to start betting and trading. In the next chapter, we’ll look
at combining the use of R as an interface to Betfair with fundamental analysis in order to construct fully
automated betting strategies.

© 2011 Betwise Ltd 31 v. 1.0

Chapter 7 - Applying BetfaiR to example betting
strategies
This chapter extends the concept of using the BetfaiR package beyond the functions in the package to
suggest ways in which complete betting strategies can be built and executed within the R environment.

The examples in this Chapter will only scratch the surface in terms of what is possible, though should
provide an insight into ways in which the package can be applied in a wider context.

Whilst a comprehensive discussion of betting strategies is beyond the scope of this guide, such a discussion,
along with many detailed examples, is provided in Automatic Exchange Betting (). Likewise, we can only
scratch the surface in terms of the fundamental analysis which usually forms the foundation of a betting
strategy, but we do explore some examples for horseracing in this Chapter that can be developed using the
Smartform database for R, available at .

Betting strategies

A betting strategy typically involves trying to determine the outcome of a certain type of event using a
certain, repeatable method.

Using horseracing as an example, predicting an event outcome on the Betfair exchange could be
predicting whether a horse will win (ie. should be backed) or lose (ie. should be laid) in a race, whether it
will be placed (or not) in a race. It could also be predicting a subset of the event, depending on what other
derivative markets exist around the event, such as whether horse A will beat horse B, irrespective of
whether or not horse A or horse B wins (or places) in the event itself.

Much discussion around betting strategies concerns whether or not all aspects of the strategy should be
executed programmatically, or different programs should be created for each task, some of which may
then be run manually.

Whatever the bettor’s preference, in starting to look more closely at programs for predicting event
outcomes, it is clear we need to use more than market data. Whilst market data can be useful for predicting
price and volume activity, it will not assist with assessing gauging the ability of the contenders in an event.
Gauging the ability of contenders and how likely the contenders are to show that ability in the peculiar
circumstances of the event in question is key to gauging their fundamental chances of success, as opposed
to the market’s current interpretation of those chances.

Indeed, many parallels exist with the financial markets in this regard, in that the study of price and
markets alone can only tell us so much about the value of the financial instrument being traded. To
determine the value of the instrument beyond what the current market is willing to pay also requires some
data relating to the intrinsic value of the instrument, compared to the trading situation and economy in
which the company finds itself. In the case of company shares (ie. equities), data relating to a company’s
value can be found in its historic and recent trading figures, it’s balance sheet - including debt, assets, profit
and loss - its operations, its executive management, the success or otherwise of its products, the industry
sectors and geographies it operates in and so on.

In the case of horses, it’s a similar story, except we are not looking to the historic performance of the
company but the historic performance of the horse in order to assess how it might perform in its next
event.

© 2011 Betwise Ltd 32 v. 1.0

Fundamental data in sports betting

In financial markets, copious data relating to the operations of listed companies is used and generally
available for quantitative analysts to crunch, in order to come up with investment (ie. betting) strategies.
This is generally referred to as fundamental data, and investment strategies which rely on this approach as
fundamental investment strategies.

Essentially the purpose of such crunching is to create betting strategies, indicating when it might be a
propitious moment to buy or to sell. Such analysis can therefore lead to long term or short term
investment recommendations.

This process is analogous to the idea of betting and trading in sports betting markets. Although there is
generally an entry and an exit in financial investment (eg. unless buying a derivative and holding it to
expiration, such as a call option, which is a straight bet), the principal of adopting either a betting or
trading strategy, betting on an outcome or trading in and out of a temporary movement, is the same.

In sports betting our fundamental data are the data relating to the historic performances and the current
attributes of all contenders in an event.

In horseracing, this means all the historic performances of horses, including the conditions under which
they were achieved, as well as all the data relating to upcoming races and the conditions in which they
will be run. At Betwise we license Smartform () as a programming friendly database for the purpose of this
type of analysis.

Horseracing analysis using Smartform with R

Since Smartform is loaded in MySQL, it works well with R. To connect to Smartform from R we can use
the RMySQL package and establish a connection, represented by SF below:

> library(RMySQL) # load library
> SF <- dbConnect(MySQL(), user="smartform", dbname="smartform")

There are plenty of ways to query the database now we have established a connection from within R. To
maintain a familiar syntax of SQL queries, we can simply save MySQL statements as R objects and then
pass them to our connection. So queries to the database will simply take the form of creating an object for
each query, using the paste function and including the query statement within it, thus:

> sql1 = paste("select distinct(trainer_id) AS 'Trainer ID', trainer_name AS
'Trainer' from daily_runners join daily_races using (race_id) where
meeting_date=CURDATE()", sep="")

Now we have statement represented by sql1 we can pass it to the MySQL connection using the function
dbGetQuery:

> trainer_ids=dbGetQuery(SF, sql1)
> ids=paste(trainer_ids[,1], sep="", collapse=",")
create comma separated list of all today's trainers

Above we have selected the unique trainers for all upcoming races on the current day.

This is a preliminary step to analysing the record of each of the current trainers in Smartform in order to
produce, for each trainer with a runner today, the recent strike rate for that trainer. “Strike rate” is simply
defined as the percentage runners to winners over a certain time period.

© 2011 Betwise Ltd 33 v. 1.0

A trainer’s strike rate is an interesting statistic for a number of reasons. For the time being we can assume
that, as a result of backtesting, we have established that this is a potentially significant factor to use within
the context of a betting strategy (in fact, in certain circumstances, betting on horses whose trainers have
good strike rates can even be profitable in itself).

Producing a strike rate for each trainer is therefore a matter of querying the number of runs from each
trainer over a certain period versus the number of wins for each trainer over the same time period. We can
do most of this by remaining within the realm of SQL statements and querying the database to produce
objects we will subseqently manipulate. The R commands for this are as follows:

produce run count for each trainer over past 14 days

> runner_count_sql = paste("SELECT count(historic_runners.trainer_id) AS 'Runner
Count', historic_runners.trainer_name AS 'Trainer' FROM historic_races JOIN
historic_runners USING (race_id) WHERE meeting_date>'", Sys.Date()-14, "' AND
historic_runners.trainer_id IN (", ids, ") GROUP BY historic_runners.trainer_id",
sep="")
> trainer_runner_count=dbGetQuery(SF, runner_count_sql)

produce win count for each trainer over past 14 days

> trainer_win_sql = paste("SELECT count(historic_runners.trainer_id) AS 'Win Count',
historic_runners.trainer_name AS 'Trainer' FROM historic_races JOIN historic_runners
USING (race_id) WHERE meeting_date>'", Sys.Date()-14, "' AND
historic_runners.trainer_id IN (", ids, ") AND finish_position=1 GROUP BY
historic_runners.trainer_id", sep="")
> trainer_win_count=dbGetQuery(SF, trainer_win_sql)

create data frame for trainers who have had winners and add strike rate
column to the data frame

> winning_trainers = merge(trainer_runner_count, trainer_win_count)
> winning_trainers$strike_rate=winning_trainers[,3]/winning_trainers[,2]

Now the data frame winning_trainers should contain data such as the below:

> winning_trainers
 Trainer Runner Count Win Count strike_rate
1 A Oliver 10 1 0.10000000
2 A P O'Brien 33 5 0.15151515
3 A W Carroll 20 2 0.10000000
4 Adrian McGuinness 9 1 0.11111111
5 B Ellison 24 1 0.04166667
6 B G Powell 6 1 0.16666667
7 B J Llewellyn 6 2 0.33333333
8 B M R Haslam 8 1 0.12500000
9 B S Rothwell 4 1 0.25000000
10 C F Swan 8 1 0.12500000

We can now reference the strike rate for any query on trainers running today, and by the same token rank
all trainers within a given race according to their strike rate.

Indeed, betting on horses trained by trainers with a strike rate and a run count above a certain

© 2011 Betwise Ltd 34 v. 1.0

percentage may provide substance for a profitable betting strategy in its own right. Let’s suppose for a
moment that it does, we can now merge all runners from today with their trainer strike rates as follows:

> daily_runners = paste("SELECT race_id, scheduled_time, course, name, trainer_name
AS 'Trainer', trainer_id from daily_races join daily_runners using (race_id) where
meeting_date=CURDATE() order by scheduled_time, course")
> runners=dbGetQuery(SF, daily_runners)
> runners_and_trainers=merge(runners,winning_trainers)

Betfair daily mapping

Smartform also maps all daily runner Ids and race Ids in the Smartform database to all Betfair runner
Ids and race Ids using a daily Betfair mappings table, so we can get the daily runner Ids and race Ids
which correspond to the Betfair Ids automatically.

First, let’s run the query for the betfair_daily_mappings in Smartform, to produce the Smartform
runner name and the Betfair Ids, as follows:

> bf_ids = paste("select scheduled_time, daily_races.course, daily_runners.name,
bf_race_id, bf_runner_id from daily_races join daily_runners using (race_id) join
daily_betfair_mappings using (race_id, runner_id) where meeting_date=CURDATE()")
> bf_runners=dbGetQuery(SF, bf_ids)

Now, we can merge these details with our existing data frame, giving a comprehensive set of strike rates,
where these are positive, for all today’s races and runners, as follows:

> bf_runners_and_trainers = merge(runners_and_trainers, bf_runners)

From this point, we can use the strike rates as an input to a model along with any number of other
variables, in order to compute the “true” probability of each horse winning the race. Or, quite simply, we
can apply some rules to bet the highest strike rates according to the distribution of other strike rates in any
particular race.

The point with both approaches is that we can run this entire script automatically, as well as creating the
bets to execute the strategy with the BetfaiR package, since we have the race Id and runner Id as part of
the data set.

© 2011 Betwise Ltd 35 v. 1.0

Appendix 1 - Access to Betfair API Services
The BetfaiR API is accessible to anyone with a Betfair account.

The basic level of access is the Free Access API, the product code for this is 82 (you use this in your login
code as the argument to api_access_type, as detailed in Chapter 3).

The set of services available in the Betfair API is detailed in the official Betfair documentation Sporting
Exchange API available at http://bdp.betfair.com/index.php?
option=com_weblinks&catid=59&Itemid=113

Some services are restricted in use under the Free API. Generally these are services that enable high
frequency access to markets or accessing multiple markets within a short timeframe. A full list of these
services can be found at the Betfair Developer site http://bdp.betfair.com.

The Free level of access is fine for most betting robots. A discussion of the many viable strategies and
techniques for automating betting using the free API is detailed in Automatic Exchange Betting - .

However, intensive use of the Betfair API, such as that required for some trading robots, may require a
paid access subscription.

Nb. If you do sign up for a paid access subscription, you can take advantage of of an offer that Betwise
agreed with Betfair for users of the betfaiR library which gives free access for 2 months. Just type “BetfaiR
package” in the comments box when you sign up.

© 2011 Betwise Ltd 36 v. 1.0

http://bdp.betfair.com/index.php?option=com_weblinks&catid=59&Itemid=113
http://bdp.betfair.com

Appendix 2 - Betfair Price Increments
Since the decimal odds requested for any bet, back or lay, require the exact price format and range used by
Betfair, automated programs must be capable of specifying the values in this range. The below table shows
the price increments for Betfair odds.

Price Increments for Betfair Odds Markets

Decimal Odds Range Increment 1.01 ® 2 0.01 2 ® 3 0.02 3 ® 4 0.05 4 ® 6 0.1 6 ® 10 0.2 10 ® 20
0.5 20 ® 30 1 30 ® 50 2 50 ® 100 5 100 ® 1000 10

All the decimal odds available are reflected in the betfaiR package vector constant, betfair_odds. At the
command line, type:

> betfair_odds

in order to get a screen printout for all 350 discrete decimal odds available.

You can use this vector to automatically get the next decimal price above the current one, or below, just as
you would with any other vector in R. For example,

> which(betfair_odds==1.05)

will show us that the price 1.05 is the fifth value [5] in the vector betfair_odds. Let’s say we have saved
the current decimal odds in a vector current_price. So to get the next price available we simply have to
add 1 to the return variable, as follows:

> current_price = 1.05
> current_price_position = which(betfair_odds==current_price)
> next_price = betfair_odds[current_price_position+1]

© 2011 Betwise Ltd 37 v. 1.0

	Table Of Contents
	Chapter 1 - Introduction
	The BetfaiR package for R
	Using Betfair Trading with R

	Chapter 2 - Installing R and BetfaiR
	Installing R
	A brief guide to installing R

	Installing the betfaiR package
	Installing and loading the package in Windows
	Loading the package in Mac OS X
	Loading the package in Linux

	Getting help with the betfaiR package

	Chapter 3 - Login and market search
	Let’s get started
	Logging in via the API
	Searching Available Markets for Different Sports
	Using code snippets for greater productivity

	Chapter 4 - Getting market data
	Collecting complete market price time series
	Building a data structure containing market data time series
	The getPrices function
	The update function
	Complete script to collect prices

	Chapter 5 - Market Price Analysis and Visualisation.
	Visualising the price ladder with plotPrice
	Technical analysis plots with quantmod
	Calculating the market overround
	Sophisticated technical analysis plots
	The implied probability plot

	Chapter 6 - Betting and Trading
	Betting and Trading - what’s the difference?
	Placing a bet
	Updating a bet
	Cancelling a bet
	Conclusion

	Chapter 7 - Applying BetfaiR to example betting strategies
	Betting strategies
	Fundamental data in sports betting
	Horseracing analysis using Smartform with R
	Betfair daily mapping

	Appendix 1 - Access to Betfair API Services
	Appendix 2 - Betfair Price Increments

